
Many slides here were adapted from CMU 16-385 Computer Vision

What is an image?

A (grayscale)
image is a 2D

function.

domain
What is the range of
the image function f?

grayscale image

What types of image filtering can we do?
Point Operation

Neighborhood Operation

point processing

“filtering”

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear raise contrastdarken

invert raise contrast non-linear lower contrastlighten

How would you
implement these?

Many other types of point processing

Linear shift-invariant image filtering

• Replace each pixel by a linear combination of its neighbors (and possibly itself).

• The combination is determined by the filter’s kernel.

• The same kernel is shifted to all pixel locations so that all pixels use the same linear
combination of their neighbors.

• Modern name? Convolution (yes, the same guy in convolutional neural network)

Convolution for 1D continuous signals

Definition of filtering as convolution:

filtered signal input signalfilter

notice the flip

Convolution for 1D continuous signals

Definition of filtering as convolution:

filtered signal input signalfilter

Consider the box filter example:

notice the flip

1D continuous
box filter

filtering output is a
blurred version of g

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image input imagefilter

notice the flip

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image input imagefilter

If the filter is non-zero only within , then

notice the flip

The kernel is the 3x3 matrix representation of .

Convolution vs correlation

Definition of discrete 2D convolution: notice the flip

Definition of discrete 2D correlation: notice the lack of a flip

• Most of the time won’t matter, because our kernels will be symmetric.
• Will be important when we discuss frequency-domain filtering

Simplest Convolution: the box filter

• also known as the 2D rectangular filter

• also known as the square mean filter

1 1 1
1 1 1
1 1 1

• replaces pixel with local average

• has smoothing (blurring) effect

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

kernel

image output

filter image (signal)output

Let’s run the box filter

note that we assume that
the kernel coordinates are

centered

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

shift-invariant:
as the pixel

shifts, so does
the kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

01 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 301 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 20 10

10 10 10 10 0 0 0 0

10

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 20 10

10 10 10 10 0 0 0 0

10 10 10 10 0 0 0 0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 20 10

10 10 10 10 0 0 0 0

10 10 10 10 0 0 0 0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

… and the result is

kernel

Some more realistic examples

Practical matters: what about near the edge?

• The filter window falls off the edge of the image
• Need to extrapolate!
• Common ways:
• clip filter (black)
• wrap around
• copy edge
• reflect across edge
•

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1
1
1

1 1 1
1 1 1
1 1 1

1 1 1

*

column

row
example:
box filter

What is the rank of this filter matrix?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1
1
1

1 1 1
1 1 1
1 1 1

1 1 1

*

column

row
example:
box filter

Why is this important?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1
1
1

1 1 1
1 1 1
1 1 1

1 1 1

*

column

row
example:
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1
1
1

1 1 1
1 1 1
1 1 1

1 1 1

*

column

row
example:
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1
1
1

1 1 1
1 1 1
1 1 1

1 1 1

*

column

row
example:
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter? M2 x N2

• What is the cost of convolution with a separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1
1
1

1 1 1
1 1 1
1 1 1

1 1 1

*

column

row
example:
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter? M2 x N2

• What is the cost of convolution with a separable filter? 2 x N x M2

The Gaussian filter

• named (like many other things) after
Carl Friedrich Gauss

• kernel values sampled from the 2D
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

• named (like many other things) after
Carl Friedrich Gauss

• kernel values sampled from the 2D
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?
• usually at 2-3σ

1 2 1
2 4 2
1 2 1

1
16

kernel

Is this a separable filter?

The Gaussian filter

• named (like many other things) after
Carl Friedrich Gauss

• kernel values sampled from the 2D
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?
• usually at 2-3σ

1 2 1
2 4 2
1 2 1

1
16

kernel

Is this a separable filter? Yes!

Gaussian filtering example

Gaussian vs box filtering

7x7 Gaussian

7x7 box

original

Which blur do you like better? Why?

Other filters

0 0 0
0 1 0
0 0 0

?

input filter output

Other filters

0 0 0
0 1 0
0 0 0

?

input filter output

unchanged

Other filters

0 0 0
0 1 0
0 0 0

?

input filter output

unchanged

0 0 0
0 0 1
0 0 0

?

input filter output

Other filters

0 0 0
0 1 0
0 0 0

?

input filter output

unchanged

0 0 0
0 0 1
0 0 0

?

input filter output

shift to left
by one

Other filters

?

input filter output

0 0 0
0 2 0
0 0 0

1 1 1
1 1 1
1 1 1

-

Other filters

?

input filter output

0 0 0
0 2 0
0 0 0

1 1 1
1 1 1
1 1 1

-

• do nothing for flat areas
• stress intensity peaks

sharpening

Sharpening examples

Sharpening examples

Do not overdo it with sharpening

original sharpened oversharpened

What is wrong in this image?

Not all simple filters are “linear transform”!

A Simple yet Important Exception: Median Filter
• Operates over a window by selecting the median intensity in the window

• Belong to the class of “rank” filter as based on sorting gray levels
• More example: min, max, range…
• “Modern name” in deep learning? “Pooling”

Median Filter: When/Why better than Box Filter?

Box Filter
(Mean Filter)

3⨉3 11⨉11

Median Filter

3⨉3 11⨉11

Fourier transform

Fourier transform

di
sc

re
te

co
nt

in
uo

us

inverse Fourier transform

‘summation of sine waves’

Computing the discrete Fourier transform (DFT)

is just a matrix multiplication:

In practice this is implemented using the fast Fourier transform (FFT) algorithm.

Fourier transforms of natural images

original amplitude phase

Convolution in spatial domain is equivalent to multiplication in frequency domain!

The convolution theorem
The Fourier transform of the convolution of two functions is the product of their Fourier
transforms:

The inverse Fourier transform of the product of two Fourier transforms is the convolution
of the two inverse Fourier transforms:

=
filter kernel

=

Spatial domain filtering

Frequency domain filtering

Fourier transform inverse Fourier transform

Gaussian blur

Box blur

More filtering examples

?

?

filters shown
in frequency-

domain

More filtering examples
low-pass

band-pass
filters shown
in frequency-

domain

high-pass

More filtering examples

